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Abstract-An analytical study of the dispersion of transient stress waves in the first layer of a
weakly coupled semi-infinite bi-Iayered system is carried out. The analysis is based on approximate
Fourier transform inversions, and makes use of the fact that the weakly coupled system possesses
small propagation zones (PZs) in the frequency domain. Low- and high-frequency asymptotic
approximations to the transient waves are computed, taking into account frequency components of
the transfer function in the first and second PZs, respectively. The derived analytic expressions are
superpositions of non-oscillating terms and convolution integrals with decaying oscillatory kernels.
It is shown that, depending on the frequency and the amplitude of the convolution kernels, the
dispersed waves overshoot or undershoot the applied impulsive excitation. This result is of significant
practical importance in the design of layered systems as stress attenuators. Copyright ~! 1996
Elsevier Science Ltd.

I. INTRODUCTION

The propagation of elastic waves in layered media has been studied extensively in the
literature (Sun et at., 1968; Delph et at., 1978, 1979a, b; Herrmann and Hemami, 1982;
Tygel and Hubral, 1987; Rousseau, 1989). Among other analytical techniques, Floquet
theory was employed to study the properties of the dispersion surfaces of propagating SH-,
P- and SV-waves, and to compute the boundaries between propagation and attenuation
zones (PZs and AZs) in frequency-wavenumber space. Computing transient waves in
bounded or unbounded layered media is a challenging task (Tygel and Hubral, 1987;
Weaver et at., 1993). Techniques based on integral transforms and transfer matrices suffer
from numerical instabilities arising from evanescent waves (exponential dichotomy). Kundu
and Mal (1985) and Mal (1988) used a pole removal method to eliminate this numerical
instability, and to numerically compute the transient responses of isotropic and anisotropic
layered systems excited by harmonic or impulsive point loads. Additional difficulties are
encountered in the inversions of the integral transforms to obtain the transient waves
(Weaver et at., 1993) ; these inversions can be performed numerically (Lih and Mal, 1992),
using generalized Ray theory (Pao and Gajewski, 1977), analytically/numerically at special
limiting regions of the frequency-wavenumber space (Miklowitz, 1962, 1983), or by express
ing the transient response as a sum of inverse integral transforms related to individual
branches of the dispersion surface (Weaver and Pao, 1982). Tygel and Hubral (1987)
analyzed transient waves in layered media by explicitly computing Green functions for
point- or line-sources, and expressing the solutions in terms of integrals with finite inte
gration limits.

In additional works dispersion of transient pulses in one-dimensional layered systems
was analyzed. Approximate methods relying on small inhomogeneities in the layered med
ium were developed, based on WKB solutions (Hassab, 1976) or Bremmer series (Mendel,
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1978); these simplified approximate theories, however, are not valid when the inhomo
geneities in the system are strong. Anfinsen (1967) investigated the problem of optimum
design of layers for maximizing or minimizing the amplitude of the first transmitted stress
wave; his formulation relied on numerically optimizing solutions of sets of difference
equations. In Achenbach et al. (1968) the transmission of primary pulses through one
dimensional layered systems was analytically and experimentally studied, and it was shown
that laminated systems consisting of layers with very different mechanical impedances are
prone to first-interface bond failure under compressive excitations of very short durations.
Similar conclusions were derived by Vakakis et al. (1994) who asymptotically analyzed the
structure of propagation and attenuation zones (PZs and AZs) of bi-layered one-dimen
sional layered media at the limit of large impedance differences between layers. In that
work parameters controlling the width of the PZs were identified, analytic approximations
for the boundaries of the PZs were derived, and the effects of localized disorders on the
propagation of stress waves were analytically and numerically studied. Carcione et ai. (1991)
investigated numerically the validity of the long-wave approximation theory (Santosa and
Symes, 1991) in one- and two-dimensional semi-infinite layered media; they confirmed the
non-dispersive transversely isotropic behavior of these media at long wavelengths, and their
scattering behavior at short wavelengths. Norris (1993) compared two asymptotic theories
for one-dimensional wave propagation in in-homogeneous media: the long-wavelength
approximation (Santosa and Symes, 1991) and the O'Doherty-Anstey (1971) theory for
wave propagation in finely layered media with small reflectivity. The equivalence of these
two theories in their common range of validity was analytically established. Tenenbaum
and Zindeluk (1992) derived an exact algebraic scheme for computing transient waves in
one-dimensional layered media excited by arbitrary input pulses; their scheme was based
on the method of characteristics, and, due to the amount of algebraic manipulations
required for its implementation, it was used iteratively.

In the present work the dispersion of stress waves in a weakly coupled, one-dimensional
semi-infinite bi-layered medium is analytically studied. Denoting by T the ratio of mech
anical impedances of the two layers, it was shown (Vakakis et al., 1994) that for large T,

T = 0(1/8), 0 < 8 « I (i.e., when the medium is composed of weakly coupled, stiff layers),
the bi-layered system possesses degenerate and non-degenerate PZs with widths of 0(8 1

/
2

)

and 0(8), respectively. Use of this result is made herein to asymptotically study the dis
persion of transient stress waves in the limit of small (but non-zero) 8. The analysis is
developed for general forms of transient excitations, and relies on asymptotic evaluations
of inverse Fourier transforms. This task is demanding since separate asymptotic approxi
mations of the Fourier integrands need to be developed at different frequency ranges
representing propagation or attenuation zones of the layered medium; in addition, a careful
justification of the asymptotic operations must be performed, in order to show that the
derived analytical expressions are the dominant terms of the stress wave, and to estimate the
orders of magnitude of higher order (neglected terms). We will perform the aforementioned
asymptotic Fourier inversions only in the limit of weak coupling between layers, since only
then can the assumptions of the asymptotic theory be justified.

To our knowledge, analytical studies of transient dispersions of stress waves in layered
media are not very common in the literature, due to the difficulties associated with the
analytical inversions of the associated integral transforms, or, for example, with the very
large number of rays required in ray theory. Previous studies of dispersions of transient
pulses in linear one-dimensional spring-mass chains were carried out by Weinstock (1970),
Nayfeh and Rice (1972), Lee (1972), and Wang and Lee (1973), who explicitly analyzed
the transient responses of the chains due to general excitations; these studies were performed
by employing normal mode decompositions, or by analytically inverting Laplace or Fourier
transforms.

2. MOTIVATION FOR THIS STUDY

The semi-infinite, monocoupled undamped layered system considered herein is
depicted in Fig. I. It consists of identical periodic sets, composed of two homogeneous,
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Fig.!. The semi-infinite, mono-coupled, bi-layered system.
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linearly elastic layers, labeled 'A' and 'B', respectively. The free and forced dynamics of the
corresponding infinite and finite layered systems were studied by Vakakis et al. (1994) by
introducing a nondimensional frequency wand structural parameters r and v, defined by
the relations:

(1)

In (1), n is the dimensional frequency in (rad/sec), lA, IB the layer thicknesses, AA, As the
layer cross sections, EA , EB the moduli of elasticity and CA, CB the speeds of sound in the
two layers. Parameter r represents the ratio of mechanical impedances of the two layers,
whereas v represents the ratio of times of travel of waves propagating at phase velocity
through each layer.

Considering the i-th periodic element of the infinite system in Fig. 1, and assuming
harmonic oscillations, the displacements and internal forces at the right and left boundaries
of this element are related by the transfer matrix:

(2a)

(cf. Fig. I), where qiR, qiL denotes internal displacements and FiR, F iL internal stresses.
The components tmmm,n = L,R, satisfy the relation tLLtRR-tLRtRL = 1, and are given by
(Vakakis et al., 1994):

tLL = cos vwcos w-r sin vwsinw, tRR = cos vwcos w- (1/r) sin vw sinw

tLR = - (AAEA/IA)-l w- 1[cos vw sin w+ r sin vw cos w]

(2b)

The propagation and attenuation zones (PZs and AZs) of the layered medium are computed
by relating displacements and forces at the right and left boundaries of a periodic element
by the expressions,

(3)

and evaluating the propagation constant f1 by substituting (3) into (2a). Wave propagation
in the infinite layered system can occur only when f1 is a purely imaginary scalar. Moreover,
it can be shown that if f1 is a solution, so is - f1; this positive-negative pair of propagation
constants corresponds to two characteristic waves propagating in opposite directions in the
infinite system. In Vakakis et al. (1994) it was shown that when r is small or large (of 0(<:)
or 0(1/<:), where 0 < <: « I), the infinite system possesses small propagation zones (PZs) in
the frequency domain. The bounding frequencies separating PZs and AZs of this system
are solutions of the equation,
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coshJ1 = ± 1 (4a)

where (±) signs in represent limiting cases of standing waves (Mead, 1975). Taking into
account (2) and (3) relation (4a) can be expressed as,

[-(l+e2r*2)sinwsinvw+2er*coswcosvw] = ±2er* (4b)

where the notation r = r*/e, r* = 0(1), was introduced to denote large magnitude of
parameter r.

By solving (4b) two types of PZs can be identified (Vakakis et al., 1994), namely,
degenerate PZs, defined by bounding frequencies of the form :

Wh/l± =pn±e l/2{[-2r* 1!2 v-li2][1_((I+v2)ej2r*v)]}+0(eS/
2) (sinvpn=O) (5a)

Wh/ 2l± = pn/v ± 1'12 {[ - 2r* 1/2 V - 1/2][1_ ((1 + v2)1;/2r*v)]} +0(eS
/
2

) (sinpn/v = 0) (5b)

p = 0, 1,2, ... , and non-degenerate PZs with bounding frequencies:

wh1l± = kn+ e{[ - 2(( _1)kT I cos vkn ± 1)]/( -I)k r * sin vkn} + 0(e2
), (sin vkn =f. 0) (6a)

Whkl± = kn/v+e{[ -2(( _I)k+ I cos kn/v ± 1)]/( -1)k vr* sinkn/v} +0(e2
), (sinkn/v =f. 0)

(6b)

wherek = 1,2, ... , r = r*/e, and all variables other than I' are assumed to beO(1) quantities.
From expressions (5) and (6) one notes that when r is of 0(1/1'), the corresponding

widths of the PZs of the infinite system are of 0(1'1 /2) (degenerate PZs) or O(e) (non
degenerate PZs), and, thus, small. This is the case when layer A is composed of still material,
such as, ceramic, and layer B of soft material, for example in a polymer. Indeed, as r -> 00

the widths of the PZs tend to zero. An additional observation regarding the bounding
frequencies (5) and (6) is that parameter v affects the positions of the PZs in the frequency
domain. To demonstrate the effect of v on the structure of the PZs, consider two bi-Iayered
systems of infinite extent, denoted from now on as systems T and 'II'. The structural
parameters of the two systems are listed below.

System I
IA = 0.495 in IB = 0.005 in

EA = 4.64 x l07lb/in' En = 1 x 104lb/in'
AA = 1 in' A B = 1 in'
PA = 3.04 x 1O-41b/in) PH = 1 x 1O- 4 lb/in)
C A = 3.91 X 10' in/sec C B = 1 x 104 in/sec
T* = 1.18, v = 0.394, E = 10'

System 1I
IA = 0.450 in IB = 0.050 in

EA = 4.64 x 107 lb/in' EB = 1 x !041b/in'
AA = 1 in' A B = 1 Ill'

PA = 3.04 x 1O~4Ib/in3 PB = 1 x 10 4Ib/in)
CA = 3.91 x 10' in/sec C B = 1 X 104 in/sec
T* = 1.18, v = 4.341, /; = 10- 2

Note that the only difference between systems I and II is the lengths of their 'stiff and
'soft' layers. and that both systems possess the same (large) value of r, but different values
of v. In Fig. 2 the real and imaginary parts of the propagation constants of the two infinite
systems are depicted vs non-dimensional frequency w, and the location of the PZs is
indicated. Both systems I and II possess low-frequency degenerate PZs centered at w = 0
(labeled as 'IPZs') of widths approximately equal to 2.877 x 10- 1and 0.881 x 10- 1, respec
tively (note that both 1PZs are of 0(e I/2

) = 0(10- 1)). The first non-degenerate PZ for
system I occurs close to w = n and is of O(e) = 0(10- 2

). By contrast, for w < n system II
possesses numerous non-degenerate PZs, each of 0(10-2) and centered at w = n/v ('2PZ'),
w = 2n/v ('3PZ'), or at higher frequencies.

It is now shown that the different structure of the PZs of the infinite systems I and II
affects significantly the dispersion of propagating stress waves at the leading layers of the
corresponding semi-infinite systems. To this end, a trapezoidal pulse of 25 J1S duration and
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Fig. 2. Real (-) and imaginary (---) parts of the propagation constant J1: (a) system I, and
(b) system II.

amplitude 105 Ib/in2 was applied to the free boundaries of the semi-infinite systems I and
II, and the generated compressional stress waves were computed at various positions of the
first layer A.

The computations were carried out by performing numerical inverse-Fast Fourier
Transforms (FFTs) of the Fourier-transformed internal stresses in the first layer of the
semi-infinite layered system; the analytical expressions of the transformed stresses are given
in the next section. Although this procedure is conceptually simple, a fine sampling of the
frequency response is required for accurate computational results; moreover, as a remedy
of numerical instabilities associated with exponential dichotomy (large and small real
eigenvalues of the transfer matrices inside AZs) a loss factor equal to 11 = 2.5 X 10-2 was
assumed for all layers, leading to complex-valued moduli of elasticity E = Eo{1 +)11). A
Nyquist frequency offv = 4 x 105 Hz and a sampling frequency of Af= 24.414 Hz were
employed in the spectral computations, leading to a total number of 215 = 32768 sample
points. The accuracy of such spectral computations for finite layered media was checked
by an independent set of calculations based on modal superposition (EI-Raheb, 1993;
Vakakis et al., 1994).
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Fig. 3. Numerical computation of the dispersed stress wave in the first 'stiff layer: (a) system I, and
(b) system II. The applied load is of trapezoidal shape.

In Fig. 3a the compressional stress wave is depicted at stationsp = s/IA = 0.1,0.2,0.5,
0.8, 1.0 of the first layer A of system I. The corresponding stress wave for system II is
presented in Fig. 3b at positions p = s/IA = 0.1,0.3,0.6,0.8, 1.0. Comparing the dispersion
of the trapezoidal stress pulse in the two systems one concludes the following.

(a) In system I the maximum amplitude of the dispersed stress pulse is greater than
the amplitude of the applied force; that is, the dispersed wave overshoots the
applied impulsive load.

(b) By contrast, in system II the dispersed wave drastically undershoots the applied
force.

(c) In both systems there exist high-frequency 'tails' accompanying the dispersed stress
pulses. The 'tail' of the dispersed wave in system I is of higher frequency than that
of system II.

(d) Sufficiently close to the free surface of system II there exist additionallow-ampli
tude, high-frequency oscillations superimposed to the main stress pulse; such high
frequency oscillations are not observed in the dispersed pulse of system I.
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From the above it follows that the semi-infinite systems I and II possess radically
different dispersion properties: system I amplifies through dispersion the applied stress
pulse, whereas system II drastically attenuates it. The numerical results depicted in Fig. 3
provide the primary motivation for performing the asymptotic analysis of the following
sections. The overall goal of this analysis is a better understanding of the dispersion of
transient waves in layered media for the purpose ofemploying such media as shock isolators
against external impulsive loads.

3. DISPERSION OF THE STRESS WAVE~LOW FREQUENCY APPROXIMATION

Analytical expressions for the Fourier-transformed internal stress in the first layer of
the semi-infinite system of Fig. I can be derived, either by employing the method of
characteristic receptances first introduced by Mead (1975), or by considering (2a) and (3)
and imposing the causality condition that there is only one (right-going) characteristic wave
propagating through the system. Denoting by FL (w) the Fourier transform of the applied
stress fL(t) , it can then be shown that the Fourier-transformed internal stress F(w;p) at
position p = s/IA in layer A (the 'stiff layer) of the first periodic set of the semi-infinite
system is given by :

[
. (1-r2 )(2r)-' Sin(VW)SinW-SinhJ.l]

F(w;p) = cos(pw)+sm(pw) (). I ) • () FL(w) == R(w;p)FL(w)
cos vw smw+(l/r sm vw cosw

(7)

where w is the previously defined non-dimensional frequency, and R(w ;p) = F(w;p)/FL(w)
the transfer function. The propagation constant J.l is computed by the following expression
(Vakakis et al., 1994):

cosh J.l = (2r)-1 [- (1 + r 2
) sin w sin vw + 2r cos wcos vw] (8)

There exist two branches of J.l, corresponding to positive- and negative-going waves in the
layered system of infinite extent. As discussed previously, due to the causality only the
positive branch of J.l should be considered in computing waves propagating in the semi
infinite system. Expressions similar to (7) hold for the transformed internal stresses in other
layers of the system, but since the present work focuses on the initial dispersion of the
applied transient stress pulse, only waves in the first layer are considered.

Examining expressions (7) and (8), at p = 0 (traction-free surface) it is satisfied that
F(w;p) = FL(w), whereas at p = 1 (first interface between layers) the applied pulse is fully
dispersed. In Fig. 4 the transfer functions R(w;l) = F(w;l)/FL(w) at positionp= I of
systems I and II are depicted. It is noted that the transfer functions attain finite amplitudes
at small neighborhoods of the PZs of the corresponding infinite systems, and nearly vanish
elsewhere. This feature of the transfer functions is employed in the following analysis to
construct closed-form asymptotic approximations of integrals associated with the Fourier
inversion of expression (7).

The transient stress wave in the leading layer of the semi-infinite systems is computed
by inverting the set (7), (8). The following convolution integral is then derived:

f(t ;p) = (2n)-1 (cA/IA) r: R(w ;p)FL(w) exp(j(cA/IA)wt) dw = f~: r(t-r ;p).f~Jr)dr

(9a)

where the kernel ret ;p) is the inverse Fourier transform of the transfer function R(w ;p):
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systems are also depicted.

f
+ [ . (1-1 2)(21)-1 sin(vw) sin w- sinh Ii]

= (2n)-' (c4/14) _.~.' cos(pw) +sm(pw) . .
J cos(vw) smw+ (1/1) sm(vw) cosw

In (9a), f(t ;p) denotes the transient stress wave at posItlon p of the first layer, and
j = (- I) 1/2. In the following analysis an asymptotic approximation to the kernel r(t; p) of the
convolution integral is derived. To a first approximation, only low-frequency components of
the transfer function R(w;p) will be taken into account, and ret ;p) will be approximated
as follows:
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(10)

where r(LF)(t ;p) denotes the low-frequency approximation of ret ;p), ±w1k2) are the fre
quency boundaries of lPZ (cf. eqn (5a, b), with p = 0 and negative frequencies allowed),
and R(U)(w ;p) is the low frequency approximation of the transfer function; the quantity
R(LF)(W ;p) is analytically evaluated below. Motivated by the fact that for r = 0(1/8) the
lPZs of systems I and II are degenerate, and of 0(8 1/2

), the frequency w is rescaled as
w = 8

1i2
X, where x is an 0(1) frequency parameter. Rescaling w in the expression of the

propagation constant, (8), and selecting only the positive branch J.1., one obtains the fol
lowing low-frequency asymptotic approximation for sinhJ.1. at frequencies inside lPZ and
lAZ:
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[
vr*x2J1/2

sinhJ1(Lf) =j(vr*)1/2 X 1--
4
- +O(e),

- [vr*x
2

JI
/
2sinhJ1(Lf) = - (vr*)1/2 X -4-"- -1 +O(e),

(11)

The above expressions hold at the limit of large r, when r = r*/e. Rescaling w in the
expression of R(w ;p) (eqn (7)), expanding in terms of e, taking into account (11), and
retaining only terms of leading-order, one obtains the following low-frequency asymptotic
approximation for R(w ;p);

[
pvr*X2J [ ,[ vr*X

2
JI/2J= 1- -2- -j (vr*)1!2pX 1- -4- +O(e) (1PZ)

[
pvr*X2J ,[vr*x

2
J1

/
2= 1- -2- +(vr*)1,2pX -4- -1 +O(e)(1AZ) (12)

Expressions (12) are asymptotically valid only in small neighborhoods of IPZ. Since the
computation of the kernel r(Lf)(t ;p) requires integration of integrands defined over tce
entire frequency range - Cf:; < w < + 00 (cf. eqn (7)), it is necessary to extend the local
approximations (12) over the entire frequency range. This is performed by neglecting terms
of O(e) or of higher order, and expressing the quantities x and r* in terms of the original
variables wand r. The following approximate expression for the low-frequency approxi
mation R(LF)(W ;p) is then obtained, which is valid over the entire frequency range:

[
pvrw2J [ '7 [ vrw

2
JI/2JR(LF)(W;p)= 1--

2
- -j (vr)I!~pW 1--

4
- ,

[
pvrw2J [ [vrw

2
JI/2JR(LF)(W;p) = 1- -2- + (vr)1/2pW -4- -1 , (13)

Substituting (13) into (7), introducing the change of variable, v = 2- 1/2(vr)I/2W , and expand
ing the complex exponentials of the integrands in terms of trigonometric functions, one
obtains the following expression for the low-frequency kernel r(LF)(t ;p) :

ret ;p) ~ r(LF)(t ;p) = (2/n)(cA/IA)(vr)-1/2 {1' (1-2pv2) cos(cwt) dv

+l' 2pv(1-v2)1/2 sin(lXvt)dv+ J+oc [1-2Pv 2+2PV(1-v2)1/2]COS(CWt)dV} (14)

where IX = 2(cA/IA)(vr)-'/2. An intermediate calculation is required before evaluating the
integrals (14). It can be shown, that by appropriate definition of the multi-valued function
fez) = (z2_1)1/2, Z E C on the real axis of the complex plane, the following relation holds:
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+Xl

-Xl [1- 2v2 +2vf(v)] exp( - jewt) dv

J+Xl }+ 1 [1- 2v2+ 2v(1- v2) li2]cos(cwt) dv
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(15a)

The left-hand side of eqn (15a) can be evaluated by contour integration (Wang and Lee,
1973) as follows:

f
+Xl

_ eX) [1- 2v2 +2vf(v)] exp( - jowt) dv = (4njat)J2 (at) (15b)

where J2(') is the second-order Bessel function of the first kind. Taking into account the
relation (Gradshteyn and Ryzhik, 1980),

(15c)

and combining (15a-e), the following equality is established:

(15d)

The integral on the right-hand side of the above expression can be easily evaluated in terms
of elementary functions, and, thus, the improper integral (15d) is explicitly determined.
Taking into account the intermediate analytical results (15a~), expression (14) is evaluated
in closed form as follows:

. 2p
r(t ;p) ~ r(LF)(t ;p) = (1-p)(j(t) + ~J2(rJ.t)

t

where the definition of Dirac's generalized function,

+cx;

bet) = (1 j2n) Jexp(jut) du),

(16)

was employed.
Hence, the low-frequency kernel r(LF)(t ;p) is determined in closed form. Substituting

(16) into the convolution integral (9a), performing algebraic manipulations, and taking
into account the properties of Dirac's function one obtains the following analytical
expression for the transient stress wave:

(17)
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Fig. 5. Oscillatory kernel J2(:t.u)!u of the convolution integral (14) for systems I and II.

Expression (17) asymptotically approximates the transient stress wave in the first 'stiff'
layer of the semi-infinite system in the limit of large values of ,. In deriving (17) only low
frequency components of the transfer function were taken into account, an approximation
which is justified when the impedance parameter, is large, since then, the first degenerate
PZ is of 0(,-1/2), and, thus, small; moreover, higher-frequency non-degenerate PZs are of
0(,-1) (i.e., smaller than IPZ), and provide minimal corrections to the overall transient
response.

The analytical expression (17) indicates that the transient wave in the first layer is
composed of two terms. The first term is directly proportional to the applied load, does not
depend on the structural parameters of the layered system, and diminishes in amplitude as
p increases; at p = I, i.e., when the stress pulse is fully dispersed, this term vanishes. The
second term in (17) is oscillatory, and is in the form of a convolution of an oscillatory
kernel and the applied load. The parameter rt. in the argument of the Bessel function is
proportional to the width of the first PZ of the layered system; for system 1, rt. = 2.27 x 105

,

whereas, for system II, rt. = 7.65 X 104
. Hence, there is an order of magnitude difference in

the values of rt. for the two systems, a feature which explains the overshoot or undershoot
of the dispersed stress waves of Fig. 3. The kernel Jirt.u)/u of the convolution integral (17)
for systems I and II is depicted in Fig. 5; note that there exist large differences in the
magnitudes and frequencies of the kernels, caused by the large differences of the cor
responding values of rt.. When the kernels of Fig. 5 are convoluted with the applied load,
they produce overshoot (system I) or undershoot (system II) of the dispersed stress wave
in the first layer. Moreover, the frequencies of the kernels determine the frequencies of the
'tails' of the dispersed pulses. In Fig. 6 the analytical transient waves (17) for systems I and
II are depicted for various positions 0 ~ p ~ 1. These results were obtained by numerically
evaluating the convolution integral (17) using Mathematica. Comparing these plots with
the numerical results of Fig. 3 good agreement is observed. The analytical formula (17)
captures the main (low-frequency) characteristics of the dispersed stress pulse, although,
due to the previous simplifying assumptions it does not model the low-amplitude, high
frequency modulations of the wave in system II. These modulations are caused by frequency
components of the transfer function close to higher PZs of the layered system, which were
not taken into account in the low frequency approximation (17). In the next section an
approximate asymptotic analysis of the high-frequency modulations of the stress wave in
system II is carried out.
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Fig. 6. Analytic approximation of the dispersed stress wave in the first 'stiff layer: (a) system I, and

(b) system II. Results based on formula (14).

4. DISPERSION OF THE STRESS WAVE-HIGH FREQUENCY EFFECTS

As mentioned in the previous sections, the high-frequency modulations appearing in
the numerical computations of the stress wave for system II (Fig. 3b) are caused by
frequency components of the transfer function lying in vicinities of high-order non-degener
ate PZs. The fact that no high-frequency modulations exist in the wave propagating in
system I can be easily justified by examining the structure of PZs of this system. Referring
to the plots of Fig. 2, 2PZ in system I occurs at relatively high-frequencies (w > 3) ; this
feature, coupled with the fact that the strongest frequency components of the impulsive
load are confined to low-frequencies (in the range Iwl < 1), leads to negligible contributions
from high-order PZs in the propagating pulse in system 1. By contrast, system II possesses
numerous non-degenerate PZs in the range Iwl < 3, giving rise to the high-frequency
modulations observed in the numerical results of Fig. 3a. Hence, in the following analysis
only system II is considered, Moreover, only frequency components of the transfer function
in the vicinity of 2PZ (cf. Fig. 2b) are analyzed; the effects on the response of higher order
PZs can be analyzed similarly.

The exact expression of the transient stress wavej(t ;p) in the first 'stiff' layer of system
II is provided by expressions (9a, b). To account for high-frequency effects due to 2PZ,
f(t ;p) is approximated as follows:
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(18)

wherepul(t;p) is given by (17), and the high-frequency correctionpH1')(t;p) is approxi
mated according to :

pHF)(t ;p) = f~: r(HF)(t-T ;P)fL(T) dT,

r(HF)(t;p) = (2n)-1(cA/IA) f::c

R(HF)(w;p)exp(J(cA/IA)wt)dw (19)

The high-frequency contribution to the transfer function due to 2PZ, R(HF)(W;p), is
computed in a way similar to R(LF)(W ;p), i.e., by asymptotically approximating the transfer
function sufficiently close to 2PZ, and extending the resulting local approximations over
the entire frequency range - CJJ < w < + 00. In the vicinity of 2PZ, the frequency w
is parametrized according to w = n/v+ex; for large T = T*/e, coshfl is asymptotically
approximated by expanding the exact expression (8) in terms of e, and retaining only
leading-order terms:

coshfl = -cos(n/v) + (xvr*/2) sin (n/v)+O(e), w = n/v+ex (20)

Expression (20) holds only locally, and, in view of expression (16) which involves inte
grations over the infinite frequency domain, must be analytically continued for
- 00 < w < + 00. To perform this analytic extension the following global continuation of
cosh fl is performed, valid for positive as well as negative frequencies:

vr (n/v)2 _w2
coshfl(HF) = -cos(n/v) -sin(n/v) -4 (' )

H/V
(21)

It is easy to show that for r = r*/e and w = n/v+ex expressions (20) and (21) agree to
leading order. Relation (21) provides the global high-frequency approximation for the
propagation constant /l, and is analogous to the low-frequency approximation /l(LE) derived
in the previous section. Employing (21) the high-frequency approximation for sinh /l is
computed as follows:

[(
vr (n/v)2 _W2)2 J112

sinh fl(HF) = - cos(n/v) + sin(n/v) 4 (n/v) -1

[ (
VI (n/v)2 -W2)2JI12

sinhfl(H1')=±j 1- cos(n/v)+sin(n/v)4 (n/v)

(lAZ)

(2PZ)

[(
VI (n/v)2 _W2)2 JI/2

sinhfl(H1')= cos(n/v)+sin(n/v)4 (n/v) -1 (2AZ) (22)

where the ( -) and ( + ) signs in the second of the above expressions hold for w ?:: 0 and
w < 0, respectively. Note, that since the analysis deals with frequency components of the
transfer function close to 2PZ, only this PZ and its neighboring AZs are taken into account;
higher or lower PZs and AZs are not considered. The sign convention employed in (22)
is compatible with that used for deriving the low-frequency approximations for sinh /l,
expressions (8). In addition, it can be easily shown that as w --+ ± 00, the last of the above
relations diverges:
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The high-frequency correction to the transfer function, R(Hf)(W;p), in (19) is now
analyzed. Considering the general expression for R(w;p), eqn (7), and performing an
asymptotic expansion in an O(e) neighborhood of 2PZ (by setting w = n/v+ex), one
obtains the following local high-frequency approximation:

R(x;p) = cos(pn/v) + [-(XVT*/2) + ~i~h:)Jsin(pn/V)+o(e), w=n/v+ex (24)
sm n v

Following the previously outlined procedure, the local expression (24) is extended to the
entire frequency domain by performing the substitutions,

vr (n/v)2 - w2

-(xvr*/2) ---+4 (n/v) sinhl1 ---+ sinhl1(HF) (25)

leading to the following global extension for R(x ;p) :

~ . [vr (n/v)2 _w2 sinh l1(HF)J
R(HF)(W ;p) = cos(pn/v) + 4 .(n/v) + sin(n/v) sin(pn/v) (26a)

where depending on the frequency, sinh I1(HF) is computed by relations (22). Considering
the limiting behavior of R(HF)(W ;p) for large frequencies, one finds that,

limw~±wR(HF)(w;p)= cos(pn/v)-cot(n/v) sin(pn/v) (26b)

In obtaining this limit, relation (23) was taken into account. Clearly, a valid high-frequency
correction to the transfer function must decay to zero as w ---+ ± Ct), hence, it is necessary
to subtract from (26a) the residual term Res(p) = [cos(pn/v) -cot(n/v) sin(pn/v)], leading
to the following final expression for R(HF)(W ;p) :

[

VT (n/v)2 _w2 sin l1(HFl J
R(HF)(W ;p) = cos(pn/v) + 4 (n/v) + sin(n/v) sin(pn/v) - Res(p)

[

VT (n/v)2 _w2 sinhl1(Hf) J.
= -4 (/ ) +. ( ') +cot(n/v) sm(pn/v)n v sm n/v

(26c)

At the limit of large positive or negative frequencies the above expression decays to zero,
and provides a valid asymptotic approximation to the high-frequency corrections of the
transfer function. Taking into account the global expressions of sinh I1(HF) in lAZ, 2PZ and
2AZ (eqn (22)), one obtains the following expressions for R(Hf)(W;p) in these frequency
subdomains:

[

VT (niv)2 _w2
R(HF)(W;p) = sin(pn/v) - -'---1-'---__

4 (n/v)

[(
vr (n/v)2 _W

2
)2 1 JI /2 J

- cot(n/v) + -4 (/ ) -. +cot(njv)
n v sm2 (n/v)

(1AZ)
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[
VT (n/v)2 _w2

R(Hf)(W ;p) = sin(pn/v) - ,
4 (njv)

[
1 ( VT (n/v)2 -(

2)2JI!2 J
±j -.~-- - cot(n/v) + -4 (/ ) +cot(n/v)

sm2 (n/v) n v

[
VT (n/v)2 _w2

R(HF)(W;p) = sin(pn/v) - -'---
4 (n/v)

(1PZ)

[(
VT (n/v)2 _(

2
)2 1 JI /2 J

+ cot(n/v)+-4 (') -. , +cot(n/v)
n/v sm2(njv)

(2AZ) (27)

where (-) and (+) signs in the second on the above expressions hold for positive and
negative frequencies, respectively; note that relations (27) are valid for both positive
and negative frequencies. Substituting (27) into (19), one obtains the following analytic
approximation for the high-frequency convolution kernel r(HF)(t ;p) :

(28)

where the appropriate expression for R(HF)(W ;p) in each integral is determined by relations
(27). The quantities Wb±J in the limits of the above integrals correspond the bounding
frequencies of the second PZ, and are computed by the relation cosh ,u(Hf) = ± l, i.e., by
employing the global approximation for the propagation constant, eqn (21):

(±) _ [ / 2 ± l-COS(n/v)JI/
2

W o - (nlv) -4(n/v) . ( ')
rv sm n/v

(29)

It can be shown that for r = O(1/e), Wb±) = w~~)± +0(e2
), where wW± are the asymptotic

expressions for the bounding frequencies of 2PZ in the limit of large r (cf. eqn 6b).
Performing algebraic manipulations, relation (28) can be reduced to the following

simplified form:

(30)

In obtaining (30), the multi-valued functionf(z) = (Z2 _Wb+ J2 )1/2(Z2 _Wb- J2 )1!2 was appro
priately defined on the real axis of the complex plane. Introducing the change of variable,
u = (v2 r/4n) 1/2 sin 1/

2 (n/v)w, the integral in (30) is expressed as follows:
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r(HFJ(t;p) = (Ooln) sin(pnjv) sin(nlv) f~: [1-2(u2_b2)

+2(u2_b2)1/2(U2_1_b2)1/2] exp( -2jOout) du (31)

where 0 0 = (/2)(cAIIA)(8njv2r) l/2[ sin(nlv)] -1 /2, and b2 = (n/8) sin(njv) +(/2)[ cos(nlv) - 1].
The improper integral in (31) was evaluated in closed form by Wang and Lee (973) using
contour integration in the complex plane:

= (nI2) ffl(lt Jo()(2bOot)2 - (br)2)[Jo(r) -J4 (r)] dr

2n fl JJ(200tv)J~(2bOot~)
= n-J2(200t)+4nb - .~ dv

~'ot 0 v I-v 2
(32)

where Jk(v) denotes the k-th order Bessel function of the first kind. In writing the last of
relations (32) certain properties of Bessell functions were taken into account. Combining
(31) and (32) one obtains the following closed-form expression for the high-frequency
convolution kernel:

(33)

where only the first ofexpressions (32) was employed. The improved analytic approximation
for the dispersed stress wave in the first layer is provided by expression (18), and assumes
the form:

j(t;p) ;::;:;j(LFJ(t;p)+PHFi(t;p) =

= j(LFi(t ;p)+ f~if~ [(00/2) sin(pnlv) sin(njv)

The high-frequency oscillatory components ofj(HF)(t ;p) are of smaller magnitude than
those of j(LFJ(t ;p). It is noted that by construction the analytical solution (34) one takes
into account only frequency components of the transfer function close to IPZ and 2PZ of
system II (cf. Fig. (2b)). Components in the vicinities of higher PZs can be dealt with
similarly, although their contributions to j(t ;p) become smaller as the frequency of the PZ
considered increases. This explains the lack of high-frequency oscillations in the numerically
computed wave profiles for system I (Fig. 3a).

5. CONCLUDING REMARKS

The dispersion of transient stress waves in a semi-infinite system composed of bi
layered periodic sets was analyzed. The dynamics of this system depends on two non
dimensional structural parameters, namely, rand v. For large r and finite v, the system is
weakly coupled and possesses small PZs; moreover, the first PZ is degenerate, and possesses
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larger width than higher non-degenerate ones. The analysis was based on an approximate
inversion of the transfer function of the internal stress, taking into account only frequency
components in vicinities of low PZs.

It was shown that, for large values of r, an inversion taking into account frequencies
in the vicinity of the first PZ captures the main characteristics of the dispersed wave.
The low-frequency analytic approximation of the transient stress was computed as a
superposition of a non-oscillating term proportional to the applied force, and an oscillatory
convolution integral. Depending on the values of parameters r and v, the oscillatory kernel
of the convolution was found to vary in magnitude and frequency, causing overshoot or
undershoot of the dispersed wave. The analytical results were in agreement with numerical
simulations. High-frequency modulations in the dispersed wave were analytically studied
by considering higher-frequency components of the transfer function. The derived high
frequency analytic correction has the form of a double integral and its terms possess small
amplitudes. Although such high-frequency modulations are interesting from an analytical
point of view, for large r they possess small amplitudes, and, hence, are oflimited practical
importance. In such a case it is the low-frequency approximation which mainly determines
the dispersed wave.

The analytical formulae developed herein can be of significant practical use when
designing layered, composite systems such as stress attenuators or shock isolators. As
shown in this and other works in the literature, depending on the elastic and geometric
properties of the layers, significant dispersion and undershoot/overshoot of the transient
stress wave in the leading layer of the system results. In particular, the observed undershoot
of the primary stress pulse in the first layer of system II is attributed to the complicated
pattern of reflections and transmissions of the various frequency components of the stress
wave at the various layer interfaces of the semi-infinite system; the stress wave undergoes
further dispersion as it propagates through the rest of the layered medium.
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